home *** CD-ROM | disk | FTP | other *** search
- #N Venetian blinds
- #C This is a finite version of the infinite p2 oscillator
- #C in which rows alternate full, full, empty, empty,
- #C full, full, ... Two types of edges are shown, one
- #C perpendicular to the rows and one at a 45 degree
- #C angle. (It's easy to prove that there's no p2 edge
- #C parallel to the rows.) Also shown are 3 type of
- #C corners where the edges meet. This partly answers a
- #C question of John Conway's: What's the maximum average
- #C density of an infinite p2 pattern, and can it be
- #C obtained as a limit of finite p2 patterns? This shows
- #C that 1/2 is a lower bound. Hartmut Holzwart showed
- #C that 8/13 is an upper bound.
- #O Dean Hickerson, drhickerson@ucdavis.edu 9/13/92
- #P -31 -36
- ..................*.**.**......*......**.**.*
- ..................**.*.*...**.*.*.**...*.*.**
- .....................*...*..*.*.*.*..*...*
- .....................*..***...*.*...***..*
- ....................**.*.....*.*.*.....*.**
- .......................*..**.*...*.**..*
- ....................**..***..**.**..***..**
- ................**.*.**...**.*****.**...**.*.**
- **.**...**......**.**....*...........*....**.**
- .*.*...*.*.........*..**.*.*.......*.*.**..*
- .*..*..*........**..***..**.*******.**..***..**
- ..*.*.*..*..**.*.**...**.*************.**...**.*.**
- ...*.**.**..**.**....*...................*....**.**
- .....**........*..**.*.*...............*.*.**..*
- ....*.......**..***..**.***************.**..***..**
- ..***.*.**.*.**...**.*********************.**...**.*.**
- .*...***.*.**....*...........................*....**.**
- .***...*...*..**.*.*.......................*.*.**..*
- ....**...*..***..**.***********************.**..***..**
- ...*..*.***...**.*****************************.**...**.*.**..**
- ...*.**.*....*...................................*....**.**...*..*
- ....**.**.**.*.*...............................*.*.**..*......*.*.*
- .........**..**.*******************************.**..***..**..**.*..*
- ....**..*.**.*************************************.**...**.*....**.*
- ....*..*.*...........................................*....**.**...**.**
- ......**.*.*.......................................*.*.**..*.*.**...*.*
- ..........*.***************************************.**..***..*.*.**.*
- .........**.******************************************.**...****..*.*
- ....*.**.*.*.............................................*.......*..**
- ....**.*.*.............................................*.*.**....*.*..*
- ...........********************************************.**..*****..*.*
- .........*...*********************************************.***..***.*
- .............................................................*..*.*
- ........*.*.*..............................................*.*..*.*.*
- ....**.*...*.**********************************************.**.*...**
- ....*.**.*.***************************************************
- ........*.*
- #P -31 1
- ........*.*
- ....*.**.*.***************************************************
- ....**.*...*.**********************************************.**.*...**
- ........*.*.*..............................................*.*..*.*.*
- .............................................................*..*.*
- .........*...*********************************************.***..***.*
- ...........********************************************.**..*****..*.*
- ....**.*.*.............................................*.*.**....*.*..*
- ....*.**.*.*.............................................*.......*..**
- .........**.******************************************.**...****..*.*
- ..........*.***************************************.**..***..*.*.**.*
- ......**.*.*.......................................*.*.**..*.*.**...*.*
- ....*..*.*...........................................*....**.**...**.**
- ....**..*.**.*************************************.**...**.*....**.*
- .........**..**.*******************************.**..***..**..**.*..*
- ....**.**.**.*.*...............................*.*.**..*......*.*.*
- ...*.**.*....*...................................*....**.**...*..*
- ...*..*.***...**.*****************************.**...**.*.**..**
- ....**...*..***..**.***********************.**..***..**
- .***...*...*..**.*.*.......................*.*.**..*
- .*...***.*.**....*...........................*....**.**
- ..***.*.**.*.**...**.*********************.**...**.*.**
- ....*.......**..***..**.***************.**..***..**
- .....**........*..**.*.*...............*.*.**..*
- ...*.**.**..**.**....*...................*....**.**
- ..*.*.*..*..**.*.**...**.*************.**...**.*.**
- .*..*..*........**..***..**.*******.**..***..**
- .*.*...*.*.........*..**.*.*.......*.*.**..*
- **.**...**......**.**....*...........*....**.**
- ................**.*.**...**.*****.**...**.*.**
- ....................**..***..**.**..***..**
- .......................*..**.*...*.**..*
- ....................**.*.....*.*.*.....*.**
- .....................*..***...*.*...***..*
- .....................*...*..*.*.*.*..*...*
- ..................**.*.*...**.*.*.**...*.*.**
- ..................*.**.**......*......**.**.*
-